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This paper presents a normed G1 space and a weakened weak (W2) formulation of a cell-
based smoothed point interpolation method (CS-PIM) for 2D solid mechanics problems
using three-node triangular cells. Displacement fields in the CS-PIM are constructed
using the point interpolation method (polynomial PIM or radial PIM) and hence the
shape functions possess the Kronecker delta property facilitating the easy enforcement
of Dirichlet boundary conditions. The edge-based T-schemes are introduced for selecting
supporting nodes for creating the PIM shape functions and an adaptive coordinate trans-
formation (CT) technique is proposed to solve the singularity problem for the moment
matrix. Smoothed strains are obtained by performing the generalized smoothing opera-
tion over each triangular background cell. Because the nodal PIM shape functions can
be discontinuous, a W2 formulation of generalized smoothed Galerkin (GS-Galerkin)
weak form is then used to create the discretized system equations. Numerical examples
including static, free and forced vibration problems have been studied to examine the
present method in terms of accuracy, convergence, efficiency and temporal stability.

Keywords: Numerical methods; meshfree method; point interpolation method (PIM);
finite element method (FEM); weakened weak form (W2); cell-based smoothing.

1. Introduction

After more than half a century of development, finite element method (FEM)
has become a very powerful and versatile technique for numerical simulation
in engineering and science with many commercial software packages available
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[Zienkiewicz and Taylor (2000); Liu and Quek (2003)]. A salient feature of FEM
is that it divides a complicated continuum into finite number of elements, which
makes the numerical treatments for complicated problems possible with the use
of the Galerkin weak formulation ensuring the stability and convergence. Among
types of elements used in FEM for 2D problems, the linear triangular element is the
simplest one, which can always be generated efficiently and automatically without
manual operation for complicated domains, and hence is preferred by the engineers.
However, solutions of the linear triangular elements are generally of poor accuracy
and low convergence rate, especially for stress results. The reason is that a fully
compatible FEM model of assumed displacement based on the standard Galerkin
weak form behaves overly-stiff.

To overcome the overly-stiff problem and to improve the performance of the fully
compatible FEM results, many efforts have been made in the past, such as the devel-
opment of hybrid FEM formulations [Pian and Wu (2006)]. Recently, a generalized
gradient smoothing (GGS) technique for discontinuous functions, G space theory,
and the notion of weakened weak (W2) formulation have been developed by [Liu
(2008a, 2008b)]. The W2 formulation is also termed as the Generalized Smoothed
Galerkin (GS-Galerkin) weak form and is the foundation of a series of novel and
powerful numerical methods which can effectively solve the overly-stiff problem and
hence provide very good results even using the linear triangular mesh.The GGS
has was developed based on the gradient smoothing for continuous functions that
has been widely used in the nonlocal continuum mechanics [Eringen and Edelen,
1972], the smoothed particle hydrodynamics (SPH) [Lucy (1977); Monaghan (1982);
Liu and Liu (2003)], in solving the material instabilities [Chen Wu and Belytschko
(2000)], spatial instability in nodal integrated meshfree method [Chen et al. (2001)],
and in the development of smoothed FEM models (SFEM [Liu, Dai and Nguyen
(2007); Liu and Nguyen et al. (2007); Dai, Liu and Nguyen (2007); Dai and Liu
(2007)], NS-FEM [Liu and Nguyen et al. (2008)], and ES-FEM [Liu, Nguyen and
Lam (2008)]). Using the GS-Galerkin weak formulation, the PIM shape and the
node-based smoothing domains, a meshfree node-based smoothed point interpola-
tion method (NS-PIMa) has been proposed for both 2D and 3D problems [Liu and
Zhang et al. (2005); Zhang and Liu et al. (2007b)]. The PIM (or radial PIM) shape
functions possess the Kronecker delta property and hence facilitate the treatment
of essential boundary conditions [Liu (2002)]. It was found that the NS-PIM (or
NS-RPIM [Liu and Li et al. (2006)]) is at least linearly conforming, immune from
the volumetric locking, more tolerant to mesh distortion, works well for linear tri-
angular mesh, can provide very good stress solutions, and more importantly it can
provide upper bound solutions in energy norm with respect to both FEM and exact
ones [Liu and Zhang (2008a); Zhang and Liu et al. (2007a)]. Thus using the NS-PIM
together with the FEM, we have a systematical way to numerically obtain certified

aThe NS-PIM was originally termed as the linearly conforming point interpolation method (LC-
PIM).
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solutions of bounds in energy norm [Zhang, Liu and Li (2008)]. Extending the idea
of NS-PIM to the FEM scheme, a node-based smoothed finite element method
(NS-FEM) has been formulated for various shapes and elements [Liu and Nguyen
et al. (2008)]. The NS-FEM can be viewed as a special case of NS-PIM using lin-
ear shape functions and possesses similar properties. However, the NS-PIM (or the
NS-RPIM/NS-FEM) model is overly-soft, thus encounters the temporal instability
problem for solving dynamic problems. Then by performing the gradient smooth-
ing operation over the edge-based domains, the edge-based smoothed finite element
method (ES-FEM) [Liu, Nguyen and Lam (2008); Nguyen and Liu et al. (2008)]
and the edge-based smoothed point interpolation method (ES-PIM) [Liu and Zhang
(2008b)] have been developed in the settings of FEM and meshfree methods respec-
tively. For the ES-PIM using polynomial or radial PIM shape functions, a class of
cell-based T-scheme has been proposed for selecting the supporting nodes for the
approximation of field variables, i.e., T3 and T6/3 schemes for polynomial PIM
shape function construction; T6 and T2L schemes for RPIM shape function con-
struction. The cell-based T-scheme can not only solve the singularity problem but
also improve the efficiency of the methods [Liu and Zhang (2008b)]. Compared with
the node-based smoothing operation, the edge-based strain smoothing can properly
reduce the softening effects and hence make the edge-based model have close-to-
exact stiffness. Both ES-FEM and ES-PIM can provide very accurate solutions, are
temporally stable and hence work well for dynamic problems.

For the numerical methods discussed previously, the smoothed strains are
assumed to be constant within each smoothing domain and hence the strain fields
over the problem domain are not continuous. Based on the Strain-Constructed
Galerkin (SC-Galerkin) weak formulation and creating the strain fields using the
linear interpolation with the smoothed strains, Liu and coworkers have developed a
class of strain-constructed point interpolation methods (SC-PIM) [Liu and Zhang
(2008c); Liu and Xu et al. (2009a, 2009b)]. The SC-PIM models can produce piece-
wise linear and continuous strain fields and possess a number of attractive properties
including high accuracy, super convergence and upper bound solutions.

In this work, a normed G1 space and a weakened weak (W2) formulation for
solid mechanics problems are first briefly presented. Using the W2 formulation,
a cell-based smoothed point interpolation method (CS-PIM) is developed. In the
scheme of CS-PIM, displacement fields are constructed using the PIM (polynomial
or radial) shape functions, the smoothed strains are obtained by performing the
generalized gradient smoothing operation over each triangular background cell and
the GS-Galerkin weak form is used to derive the discretized system equations. Based
on the three-node triangular cells, two edge-based T-schemes (T4 and T2L schemes)
of selecting nodes for creating PIM shape functions have been proposed. A general
coordinate transformation (CT) technique has also been introduced to overcome
the singularity problem occurred in the process of bilinear interpolation using T4
scheme. Three models of CS-PIM are developed including CS-PIM(T4-CT) using
polynomial PIM shape functions and T4 scheme of CT technique to select the



April 6, 2009 17:56 WSPC/IJCM-j050 00179

150 G. R. Liu & G. Y. Zhang

supporting nodes, CS-RPIM(T4) using RPIM shape functions and T4 scheme and
CS-RPIM(T2L) which uses RPIM shape functions and T2L scheme. A number of
numerical examples, including static, free and forced vibration problems, will be
studied to investigate the properties of the CS-PIM models.

2. Weakened Weak (W2) Formulation

2.1. Basic equations for 2D solids in strong form

Consider a two-dimensional static elasticity problem defined in domain Ω bounded
by Γ(Γ = Γu + Γt; Γu ∩ Γt = 0) governed by the following equations.

LT
d σ + b = 0 in Ω , (1)

where Ld is a matrix of differential operator defined as

Ld

(
∂

∂x
,

∂

∂y

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

σT = {σxx σyy τxy} is the vector that collects strees components and bT =
{bx by} is the body force vector. The stresses relate the strains via the constitutive
equation or the generalized Hook’s law as follows:

σ = Dε , (3)

in which D is the matrix of material constants that is defined as follows:

D =
E

1 − v2

⎡
⎢⎢⎣

1 v 0
v 1 0

0 0
1 − v

2

⎤
⎥⎥⎦ Plane stress ,

D =
E(1 − v)

(1 + v)(1 − 2v)

⎡
⎢⎢⎢⎢⎢⎣

1
v

1 − v
0

v

1 − v
1 0

0 0
1 − 2v

2(1 − v)

⎤
⎥⎥⎥⎥⎥⎦ Plane strain ,

(4)

where E is Young’s modulus and v is Poisson’s ratio.
In Eq. (3), εT = {εxx εyy 2εxy} is the vector of strains that relates to the

displacements by the following compatibility equation.

ε = Ldu , (5)

where u = {ux uy}T is the displacement vector. Strains obtained using Eq. (5)
are generally called compatible strains and termed as ε̃ in this work.
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There are two types of boundary conditions: Dirichlet (or essential/
displacement) boundary conditions and Neumann (or natural/stress) boundary
conditions.

Dirichlet boundary conditions:

u = uΓ on Γu , (6)

where uΓ is the vector of the prescribed displacements on the essential
boundary Γu.

Neumann boundary conditions:

LT
nσ = tΓ on Γt , (7)

where tΓ is the vector of the prescribed traction on the natural boundary Γt, and
Ln is the matrix of unit outward normal which can be expressed as

Ln(nx, ny) =

⎡
⎣nx 0

0 ny

ny nx

⎤
⎦ . (8)

2.2. Definition of the normed G1 space for functions

In constructing a normed G1 space for functions, the problem Ω is discretized
properly with a set of Nn nodes without any coinciding nodes. The problem Ω
is then further tessellated properly into a set of Ns smoothing domains bounded
by Γs

n (n = 1, 2, . . . , Ns) that do not share any finite portion of the line-segments
where the function is discontinuous [Liu (2008a, 2008b)]. A G1

h space can be then
defined as:

G
1
h(Ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ν|ν(x) = F(x)d ,

ν ∈ L2(Ω) , ∀d ∈ RNn

Ns∑
n=1

(∫
Γs

n

ν(s)nids

)2

> 0, ∀ ν = 0, i = 1, . . . , d

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (9)

where the subscript “h” indicates the space is of discrete (and hence finite) dimen-
sions, d = {d1 d2 · · · dNn}T is the vector of nodal function values, and Φ(x)
is the matrix of nodal shape functions of arbitrary order constructed using any PIM
method discussed in the textbook [Liu (2002)] and can be written as

Φ(x) = [ϕ1(x) ϕ2(x) · · · ϕNn(x)] . (10)

In creating functions in G1
h spaces, we require the following conditions:

(1) Linearly independency condition: all these nodal shape functions are linearly
independent over Ω and hence are capable to form a basis.

(2) Bound condition: all the functions constructed using these shape function must
be square integrable over the problems domain. This is to ensure the conver-
gence of the discrete model to be created.
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(3) Positivity conditions : there exist a division of smoothing domains such that∑Ns

n=1 (
∫
Γs

n
v(s)nids)2 > 0, if only if ∀ v = 0, ∀d ∈ RNn and i = 1, . . . , d. This

(together with the linearly independent condition) ensures the stability of the
model.

When PIM or RPIM shape functions [Liu (2002)] are used, the functions con-
structed will in general not be continuous over the entire problem domain and hence
are not compatible. Such an interpolant is not in a H

1
h space, but in a G1

h space,
because all these three conditions can be satisfied, as shown in [Liu (2008b)].

The major difference between a G
1
h space and H1

h space is that the H1
h space

requires the first gradient of the function square integrable, but in the G1
h space

only the function itself needs to be square integrable. Therefore, the requirement
on function is now further weakened upon the already weakened requirement for
functions in an H

1
h space: a weakened weak requirement. Therefore, a G1

h space
can be viewed as a space of functions with weakened weak (W2) requirements on
continuity. In an H1

h space, the bound condition is achieved by imposing the smooth-
ness upon the first derivatives of the function being square integrable, while in the
G1

h space, it is controlled by imposing the smoothness only on the function being
square integrable and with a properly constructed smoothing domains. The stabil-
ity is automatically ensured for functions in an H

1
h space as long as the smoothness

is satisfied, due to the Poincare-Friedrichs inequality. The stability in the G1
h space,

however, is ensured by imposing the above-mentioned positivity condition.
We note that any function created using a set of shape functions that satisfy

the above-mentioned three conditions is also in the G
1
h space. A G1

h space is indeed
very accommodating and inclusive, and hence shall have much wider applications.
Because a member in a G

1
h space is also a member of the L2 (Lebesgue) space,

therefore a G1
h space is a subspace of L2 space: G1

h(Ω) ⊂ L2(Ω).
We finally define a space of functions that is fixed on the homogenous Dirichlet

boundaries and hence the functions cannot “float”.

G
1
h,0 = {v ∈ G

1
h(Ω)|v = 0 on Γu} . (11)

2.3. A weakened weak (W2) form statement: GS-Galerkin

For solid mechanics problems given in the strong statements in Sec. 2.1, our W2

statement becomes: an approximated solution ū ∈ G1
h,0 associated with the strong

statements in Sec. 2.1 satisfies

āD(ū,v) = f(v), ∀v ∈ G
1
h,0 , (12)

where

āD(u,v) =
Ns∑
i=1

As
i ē

T
i (u)Dēi(v), u,v ∈ G

1
h , (13)
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where As
i is the area of the ith smoothing domain, ε̄i is the vector of the generalized

smoothed strains in the smoothed domain. For any given vector field of displacement
u = {u1 u2}T with two components u1, u2 ∈ G

1
h, ε̄i can be written as [Liu (2008a)]:

ε̄i(u) =
1

As
i

∫
Γs

i

Lnu(x)ds = {ε̄xx ε̄yy 2ε̄xy}T
i , (14)

which is in fact a boundary flux approximated strain.
In Eq. (12), the linear functional for the solid mechanics problem is defined as

f(v) =
∫

Γt

vTtΓdΩ +
∫

Ω

vTbdΩ, v ∈ G
1
h . (15)

The important properties of the generalized smoothed bi-linear form āD and the
stability, convergence of the W2 formulation defined in Eq. (12) can be found in
[Liu (2008a, 2008b)].

3. Formulation for the Cell-Based Smoothed Point Interpolation
(CS-PIM)

3.1. Displacement approximation using PIM

For the numerical models developed in this work, the assumed displacement fields
are constructed locally using the point interpolation method (PIM) with a small
set of supporting nodes at the point of interest. There are two types of PIM shape
functions that have been developed using different basis functions, i.e. polynomial
PIM using polynomial basis functions [Liu and Gu (2001)] and radial PIM (RPIM)
using radial basis functions [Wang and Liu (2002)]. Details of how to construct
PIM shape functions can be found in the meshfree books [Liu (2002); Liu and Gu
(2005)], and we only give a brief introduction here.

For the approximation using polynomial PIM, the formulations start with the
following assumption:

u(x) =
n∑

i=1

Pi(x)ai = PT(x)a , (16)

where u(x) is a field variable function defined in the Cartesian coordinate space
xT = {x y}, Pi(x) is the basis function of monomials which is usually built utiliz-
ing the Pascal’s triangles, ai is the corresponding coefficient, and n is the number
of nodes in the local support domain. The complete polynomial basis of orders 1
and 2 can be written as

PT(x) = {1 x y} Basis of complete 1st order

PT(x) = {1 x y x2 xy y2} Basis of complete 2nd order
. (17)

For the approximation using radial PIM, the field function can be approximated
by radial basis functions augmented with polynomials as follows:

u(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

Pj(x)bj = RT(x)a + PT(x)b , (18)
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where Ri(x) and Pj(x) are radial basis functions and polynomial basis functions
respectively, ai and bi are corresponding coefficients, n is the number of nodes in
the local support domain and m is the number of polynomial terms.

The coefficients in Eqs. (16) and (18) can be determined by enforcing the
field function to be satisfied at the n nodes within the local support domain.
Finally, the PIM shape functions can be obtained and the field function can be
expressed as

u(x) =
n∑

i=1

ϕi(x)di = ΦT(x)d , (19)

where di is a nodal function value and ϕi(x) is the PIM shape function (polynomial
PIM or radial PIM) which possesses the Kronecker delta property.

3.2. Edge based T-schemes for nodes selection

The PIM shape functions in Eq. (19) are obtained under the assumption that the
moment matrix is invertible. The RPIM shape functions can always be constructed
because the radial moment matrix is always invertible for arbitrary scattered nodes
as long as to avoid using some specific shape parameters [Powell (1992)]. However,
for the construction of polynomial PIM shape functions, some measures are needed
to ensure the existence of the inverse matrix. In the previous work, a number of
methods for handling the singular moment matrix can be found in [Liu (2002)].
Recently, a set of node selection schemes, cell-based T-schemes, have been presented
and work well in the schemes of NS-PIM and ES-PIM models [Liu and Zhang et al.
(2005); Liu and Zhang (2008b)].

The schemes for node selections can be performed based on a set of background
triangular cells to ensure quality patterns of supporting points and efficiency in
computing PIM shape functions. Depending on the location of the point of interest
(that is usually the quadrature point), the node selection schemes are different. In
our W2 formulations based on G1 space theory, the points of interests are on the
boundary of the smoothing domain Γs. In the NS-PIM and ES-PIM, most quadra-
ture points are located within the triangular background cells, then the T-schemes
for node selection are associated with the triangular cells and hence they are called
cell-based T-schemes. Note that to ensure the exact enforcement of linear boundary
conditions and hence the linear conformability of the model, cell-based T-schemes
use only linear interpolation for the point of interest located on the problem bound-
aries. For the present CS-PIM models, on the other hand, the smoothing domains
are the same as the triangular cells and hence the point of interest or the the quadra-
ture points are located on the edges of the triangular cells. Hence we need to select
nodes for the interpolation for the quadrature points on the edges of background
triangles, which is called edge-based T-schemes of node selection. The following
details these T-schemes.
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In the following definition of edge-based T-schemes, edges of the triangles are
classified into two groups: interior edges and boundary edges. If the edge is located
inside the problem domain, this edge is then called an interior edge. Correspond-
ingly, if the edge is on the problem boundaries, then we call it a boundary edge.

Edge-based T2 scheme

The edge-based T2 scheme simply selects the two end-nodes of an edge of a cell. In
this simple case, piecewisely linear displacement field is used, the compatible strain
in the cell is constant, the smoothing operation has no effect, and the CS-PIM model
created will be exactly the same as the FEM(T3) model. Therefore, this schemed
will not be discussed further and will be simple referred as FEM(T3) model in this
work.

Edge-based T4 scheme

The edge-based T4 scheme selects four nodes for the interpolation for a point located
on an interior edge and two nodes for those located on boundary edges. As illustrated
in (a) of Fig. 1, when the point of interest (x) located on an interior edge (i), four
nodes (i1 − i4) are selected which are the vertexes of the two neighboring cells of
edge i. When (x) located on a boundary edge (j), as shown in (b) of Fig. 1, only
two nodes (j1 − j2) are used which are the end-points of edge j.

The edge-based T4 scheme can be used to select nodes for the construction of
both polynomial PIM and RPIM shape functions. As we mentioned previously, the
RPIM shape functions can always be obtained using arbitrary scattered nodes as
long as some specific shape parameters are not used. When 4 (or more) arbitrarily
distributed nodes are used to construct PIM shape functions, the moment matrix
can be singular and a number of methods have been suggested in [Liu (2002)] to
overcome the singularity problem, including the coordinate transformation tech-
nique. In this work, we proposed the following adaptive coordinate transformation
(CT) technique that works particularity well for 4-node interpolation.

Consider now that 4 nodes have been selected for PIM shape function construc-
tion. We then use 4 terms of polynomial basis functions of lowest order, which leads
to a set of bilinear PIM shape functions. The bilinear PIM shape functions at a
point xe = [xe ye]T can be finally expressed as follows.

ϕ(xe) = [1 xe ye xeye]

⎡
⎢⎢⎣
1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

⎤
⎥⎥⎦

︸ ︷︷ ︸
Pn

−1

, (20)

where xi = [xi yi]T(i = 1, 2, 3, 4) are the coordinates of the four nodes selected
using the T4 scheme. It is well-known the inverse of the moment matrix (Pn) may
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i1

i2

x

i4

Edge i i3

j1
j2

x Edge j 

(a) T4 scheme for node selection for the inter-
polation at a point located on an interior edge

(b) T4 scheme for node selection for the inter-
polation at a point located on a boundary edge

Edge i 

x

First layer of nodes Second layer of nodes

x
Edge j 

(c) T2L scheme for node selection for the inter-
polation at a point located on an interior edge

(d) T2L scheme for node selection for the inter-
polation at a point located on a boundary edge

Fig. 1. Illustration of edge-based T-schemes for supporting nodes selection based on three-node
triangular cells for constructing PIM shape functions for the interpolation at a point located on
an edge.

not exist, or the matrix may be ill-conditioned as discussed in the book [Liu (2002)].
In these cases, we apply the following coordinate transformation technique.{

ξ = (x − xe) cos γ + (y − ye) sin γ

η = −(x − xe) sin γ + (y − ye) cos γ
(21)

where (xe, ye) is the origin of the local coordinates system (ξ, η), which is defined in
the global coordinate system (x, y), and (γ) is the rotation angle between the local
and global coordinates system.
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Applying Eq. (21) to the four supporting nodes and the point of interest, the
bilinear PIM shape functions in Eq. (20) becomes

ϕ(xe) = [1 0 0 0]

⎡
⎢⎢⎣
1 ξ1 η1 ξ1η1

1 ξ2 η2 ξ2η2

1 ξ3 η3 ξ3η3

1 ξ4 η4 ξ4η4

⎤
⎥⎥⎦

︸ ︷︷ ︸
P′

n

−1

(22)

Using the above transformation with a proper γ, the singularity problem of the
polynomial moment matrix can be solved and shape functions at xe = [xe ye]T

can finally be obtained. However, there are two issues need to be addressed: a
proper indicator which can tell us when to perform the coordinate transform on
the object matrix (Pn) and a proper (γ) which should make the new matrix (P′

n)
well-conditioned.

In this study, the determinant of the moment matrix is used as the indicator, for
which we use a square cell as a base cell. Figure 2(a) shows four nodes located at the
vertexes of a square cell with edge length (2a) in the coordinates system (x, y). If we
used these four nodes to create the bilinear interpolation at a point located inside
the square, a moment matrix Pn in Eq. (20) can be obtained. Rotating the square
around the origin, different moment matrixes can be obtained using the new set of
coordinates of the four vertexes. The determinant of the moment matrix (d) can

x 

y 

0 
γ

0 0.5 1 1.5 2
-20

-15

-10

-5

0

5

10

15

20

( )

D
et

er
m

in
an

t (
d)

Angle (γ )

d= -16cos(2γ )

( 4a )

(a) Four nodes located at the ver-
texes of a square cell which are
used to form the bilinear PIM shape
functions at a node within the
square

(b) Relation function between determinant (d) and
the angle (γ)

Fig. 2. Coordinate transformation (CT) technique for overcoming the singular moment matrix.
Relation between the rotation angle and the determinate of the moment matrix using the four
vertexes of a square cell with edges of 2a.
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then be computed and it should relate to the transformation angle (γ), as shown in
(b) of Fig. 2. It turns out the relation has the following simple form.

d = −16a4 cos(2γ) (23)

Based on the above relationship function for the base cell, we proposed the following
adaptive coordinate transformation (CT) technique for creating bilinear PIM shape
functions.

(1) Using the T4 scheme, determine the four supporting nodes for the interpolation
for a point located on an interior edge of length L, and calculate the determinant
of the moment matrix (d1) using these four nodes.

(2) Calculate the determinant of a matrix (d0) for the base square cell with length L.
(3) If (|d1| < |d0|), we perform the following coordinate transformation.

(i) Letting d = d1 in Eq. (23), we can obtain a value of the angle (γ1) which
satisfies (γ1 ≤ π/2).

(ii) Substituting (±γ1) into Eq. (21) and calculate determinates of the two new
matrixes as shown in Eq. (22).

(iii) Select the angle from (±γ1) which gives a bigger value of determinant, use
it to perform the coordinate transformation and finally obtain the shape
functions using Eq. (22).

The above CT technique is simple can effectively resolve the singularity problem in
an adaptive manner according to the current trade distribution, and hence ensures
the creating of the quality bilinear PIM shape functions as long as these four nodes
are not in-line.

Edge-based T2L scheme

The edge-based T2L scheme selects two layers of nodes for the interpolation at a
point located on interior edges. As shown in (c) of Fig. 1, the first layer of nodes
are exactly those selected using the edge-based T4 scheme, and the second layer
contains those nodes which are directly connected to the nodes of first layer. As
we discussed previously, the T2L scheme selects two nodes to perform the linear
interpolation for those points located on boundary edges, as shown in (d) of Fig. 1.

The T2L scheme is used to select supporting nodes for constructing the RPIM
shape functions, which usually uses much more nodes than the T4 scheme does
and hence is more time consuming. We can use this scheme to create RPIM shape
functions with high order of consistence and for extremely irregularly distributed
nodes.

The nodal PIM shape functions constructed using the above mentioned schemes
will be linearly independent as long as the moment matrix is not singular [Liu
(2002)], squarely integrable over the problems domain, and hence the first two
conditions listed below Eq. (10) will be satisfied. Therefore, they can be used to
construct functions in a G

1
h space for our W2 formulation.
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3.3. Cell-based smoothed strains

In a W2 formulation, the smoothed strains are obtained using the generalized
smoothing operation Eq. (14) with displacement fields constructed using PIM shape
functions that may be discontinuous [Liu (2008a, 2008b)]. The smoothing domains
are generally constructed based on the triangular background cells and the basic
rule is we do not allow the boundary of smoothing domains share any finite parts of
the discontinuous line segments for the assumed displacement field. In the scheme of
present CS-PIM, the triangular background cells will be used to serve as smoothing
domains and also the integrations cells, as shown in Fig. 3. Because our PIM shape
functions are created for points on the edges of the cells, they are always continuous
there. The discontinuous line segments of PIM shape functions will be inside the
cell. Hence, the basic rule is well observed in our CS-PIM settings.

Note also that in a CS-PIM model, the numbers of the smoothing domains
(Ns) and quadrature (integration) cells (NQ) equal the number of triangular cells
(Ne) : Ns = NQ = Ne. Such a set of cell-based smoothing domains are linearly
independent and satisfies the condition of minimum number of smoothing domains
[Liu (2008a)]. Thus, the 3rd conditions listed below Eq. (10) are satisfied. Therefore,
the generalized smoothed bi-linear form āD will have all these important properties
given in [Liu (2008a, b)], and our W2 formulation will be stabile, converge to the
exact solution, which will be shown in the example section.

Performing the generalized gradient smoothing operation within each triangular
background cell and substituting Equation (19) into Equation (14), the cell-based
smoothed strain, ε̄k, can now be written in the following matrix form of nodal
displacements.

ε̄k =
1

As
k

∫
Γs

k

LnΦdidΓ =
∑

i∈Ninfl

B̄i(xk)di , (24)

kε

Fig. 3. Illustration of cell-based smoothing domains, which are exactly the triangular background
cells and also serve as integration cells.
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where Φ is the matrix of PIM shape functions, Ninfl is the number of field nodes
involved in constructing the smoothed strain fields within the cell-based smooth-
ing domain Ωs

k, and B̄i(xk) is termed as the smoothed strain matrix that can be
expressed as

B̄i(xk) =

⎡
⎢⎣

b̄ix(xk) 0

0 b̄iy(xk)

b̄iy(xk) b̄ix(xk)

⎤
⎥⎦ . (25)

In the above equation, elements of the smoothed strain matrix are obtained as

b̄il(xk) =
1

As
k

∫
Γs

k

ϕi(xk)nl(xk)dΓ (l = x, y) . (26)

Using Gauss integration scheme, the above integration can be further expressed
as follows.

b̄il =
1

As
k

Nseg∑
m=1

⎡
⎣Ngau∑

n=1

wnϕi(xmn)ni(xm)

⎤
⎦ (l = x, y) (27)

where Nseg is the number of segments of the boundary Γ5
k which is 3 for the CS-PIM

using triangular cells, Ngau is the number of Gauss points located in each segment
on Γs

k, and wn is the corresponding weight number of Gauss integration scheme.
In the present method, as bilinear or RPIM shape functions are used, Ngau = 2 is
adopted in Eq. (27).

3.4. Discretized system equations

The displacement field of the present method is not continuous, thus the following
generalized smoothed Galerkin (GS-Galerkin) weak form, given in Eq. (12) [Liu
(2008a, 2008b)], is used to derive the diecretized system equations.

Consider a deformable body occupying domain Ω in motion, subjected to body
forces b, external applied traction tΓ on boundary Γt and displacement boundary
conditions u = ū on Γu. If the inertial and damping forces are also considered
in the dynamic equilibrium equations, the GS-Galerkin weak formulation can be
presented as∫

Ω

δ(ē(u))TD(ē(u))dΩ −
∫

Ω

δuT[b− ρü − cu̇]dΩ −
∫

Γt

δuTtΓdΓ = 0 . (28)

It can be found that the above GS-Galerkin weak form has the same form as
the standard Galerkin weakform. Thus the formulation procedure is exactly as
same as that in the standard FEM and all we need to do is to use the cell-based
smoothed strain ε̄ in place of the compatible strain ε̃. The overall procedure of
the CS-PIM models is as follows: (1) constructing the displacement field by using
PIM and the supporting nodes selected by edge-based T4 or T2L schemes, (2)
obtaining the cell-based smoothed strains ε̄ using Eq. (24), (3) substituting the
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assumed displacements and the smoothed strains into the GS-Galerkin weak form
(Eq. (28)), and invoking the arbitrary nature of the variation operations, a set
of discretized algebraic system equation can be obtained in the following matrix
form.

Md̈ + Cḋ + K̄d = f , (29)

where M is the mass matrix, C is the damping matrix and f is the force vector
which are defined as

M =
∫

Ω

ρΦTΦdΩ , (30)

C =
∫

Ω

cΦTΦdΩ , (31)

f = −
∫

Ω

ΦTbdΩ +
∫

Γt

ΦTtΓdΓ , (32)

in which ρ is the mass density and c is the damping parameter.
In Eq. (29), the stiffness matrix K̄ is assembled from the sub-stiffness matrix

for all the integration cells, which are exactly the cell-based smoothing domains for
the present method.

K̄ij =
NQ∑
k=1

As
kB̄

T
i DB̄j =

Ne∑
k=1

As
kB̄

T
i DB̄j , (33)

where the smoothed strain matrixes are obtained using Eq. (25).

3.5. Static, free and forced vibration analysis

For static problems, the equation can be obtained imply by removing the dynamic
terms in Eq. (29):

K̄d = f . (34)

For free vibration analysis, we do not consider the damping and the force terms,
and hence Eq. (29) reduces to

Md̈ + K̄d = 0 . (35)

A general solution of such an equation can be written as

d = dA exp(iωt) , (36)

where t indicates time, dA is the amplitude of the nodal displacement or the eigen-
vector and ω is natural frequency that is found from

(−ω2M + K̄)dA = 0 . (37)

For forced vibration analysis, Equation (29) can be solved by direct integration
methods in the same way as in the FEM. For simplicity, the Rayleigh damping is
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considered in this study, and damping matrix C is assumed to be a linear combi-
nation of M and K̄,

C = αM + βK̄ , (38)

where α and β are the Rayleigh damping coefficients.
Many direct integration schemes can be used to solve the second-order time

dependent problems, such as the Newmark method, Grank-Nicholson method, etc.
In this work, we use the Newmark method to solve the forced vibration problems.
When the state at t = t0(d0, ḋ0, d̈0) is known, we aim to find the new state at
t1 = t0 + θΔt(d1, ḋ1, d̈1) where 0.5 ≤ θ ≤ 1, using the following formulations:[(

α +
1

θΔt

)
M + (β + θΔt)K̄

]
d1 = θΔtf1 + (1 − θ)Δtf0 +

(
α +

1
θΔt

)
Md0

+
1
θ
Mḋ0 + [β − (1 − θ)]K̄d0 , (39)

ḋ1 =
1

θΔt
(d1 − d0) − 1 − θ

θ
ḋ0 , (40)

d̈1 =
1

θΔt
(ḋ1 − ḋ0) − 1 − θ

θ
d̈0 . (41)

4. Numerical Implementation

4.1. CS-PIM models

For all the models of CS-PIM, cell-based smoothed strains are used. The smoothed
strains are obtained using the generalized stain smoothing operation within each
triangular background cells. Based on the different types of PIM shape functions
used (polynomial PIM or radial PIM) and different T-schemes (edge-based T4 or
T2L schemes) adopted for selecting nodes, the following CS-PIM models have been
created.

CS-PIM(T2)

This is the simplest CS-PIM model and is exactly the same as the FEM(T3),
and hence is a fully compatible model. The CS-PIM(T2) is therefore referred as
FEM(T3) in this work.

CS-PIM(T4-CT)

In the frame of CS-PIM(T4-CT), the displacement field is constructed using poly-
nomial PIM shape functions and supporting nodes selected by the edge-based T4
scheme with the CT technique. In this case we have bilinear displacement fields
within the problem domain and linear displacements along the problem boundaries.
The displacement field of the CS-PIM(T4-CT) is incompatible.
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CS-RPIM(T4)

The displacement field in the scheme of the CS-RPIM(T4) is constructed using
radial PIM shape functions and supporting nodes selected by the edge-based T4
scheme without CT technique. The displacement field of the CS-RPIM(T4) is
incompatible.

CS-RPIM(T2L)

In the CS-RPIM(T2L), we construct the displacement fields using radial PIM shape
functions and supporting nodes selected by the edge-based T2L scheme. Compared
to the above two models, the CS-RPIM(T2L) will use much more nodes for the
interpolation and hence is more computationally expensive. The displacement field
in the CS-PIM(T2L) model is incompatible.

4.2. Standard patch test

We examine the conformability property of the present method using the following
standard (linear) patch test. Satisfaction of standard patch test requires that the
displacements of all the interior nodes inside the patch follow “exactly” (to machine
precision) the same linear function of the imposed displacement on the boundary
of the patch. Therefore, passing the standard patch test can numerically ensure a
numerical method convergence to the exact solution [Zienkiewicz and Taylor (2000)].

A square patch discretized using 214 irregularly distributed nodes, as shown in
Fig. 4, is studied using the present methods. The following linear displacements are
prescribed on all the boundaries.{

ux = 0.6x

uy = 0.6y
. (42)

The analytical solution for this patch test is a linear displacement field given by
the above equation over the entire patch. The following error norm in displacements
is used to examine the computed results.

ed =

√√√√√√√√√√

Nn∑
i=1

(uexact
i − unume

i )2

Nn∑
i=1

(uexact
i )2

, (43)

where the superscript exact denotes the exact or analytical solution, nume denotes
a numerical solution obtained using a numerical method including the present CS-
PIM and Nn is the number of total field nodes.

Table 1 lists the displacement norm errors of numerical results for the standard
patch test obtained using the three models of CS-PIM. We found that all the CS-
PIM models can pass the patch test to machine accuracy and hence are capable
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Fig. 4. Patch of unique square discretized with 214 irregularly distributed nodes.

Table 1. Error norm in displacements of numerical results
for the standard patch obtained using CS-PIMs.

CS-PIM models Error in displacement norm

CS-PIM(T4-CT) 4.3209606E-15
CS-RPIM(T4) 1.2270583E-14
CS-RPIM(T2L) 1.4090296E-15

to reproduce linear displacement fields “exactly”. This confirms numerically our
theory of W2 formulation. Note that to exactly impose the linear Dirichlet boundary
conditions along the problem boundaries, linear interpolation has been used for the
points of interest located on the boundaries, which has been introduced in the
definition of the edge-based T-schemes.

5. Numerical Examples

Some benchmark numerical examples, including static, free and forced vibration
problems, are studied in this section. Except the displacement error norm defined
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in Eq. (43), the following energy error norm is also defined as follows for the later
study.

ee =
1
A

√
1
2

∫
Ω

(εexact − εnume)TD(εexact − εnume)dΩ, (44)

where εexact and εnume refer to the exact and numerical solutions of the strains
respectively, and A is the area of the problem domain.

5.1. Cantilever subjected to parabolic tractions at the free end

A cantilever is first studied, which is of length L and height D and subjected to a
parabolic traction on the right edge, as shown in Fig. 5. The beam is assumed to
have unit thickness and the analytical solutions based on the plane stress theory
are available as follows [Timoshenko and Goodier (1970)]:

ux = − py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
, (45)

uy =
p

6EI

[
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

]
, (46)

σx = −p(L − x)y
I

, σy = 0, σxy =
p

2I

[
D2

4
− y2

]
, (47)

where I is the moment of the inertia given as I = D3/12. The values of the para-
meters are taken as: E = 3.0 × 107 Pa, v = 0.3, L = 50 m, D = 10 m and P =
−1000 N.

Using the same set of triangular meshes, as shown in Fig. 6, the cantilever
beam is studied using the presented CS-PIM models. Further, this problem is also
studied using FEM(T3) or CS-PIM(T2), NS-PIM(T3) and ES-PIM(T3) with the
same triangular meshes. The FEM is serving as the “bottom line”: any CS-PIM
model that is established based on the smoothed bilinear form is softer than the
standard FEM(T3) model which is built based on the standard Galerkin weak form
and fully compatible. The NS-PIM is chosen for comparison, because we know it

L

x

y

D

P

Fig. 5. Cantilever beam subjected to a parabolic traction of the right edge.
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Fig. 6. Domain discretization using three-node triangular cells for the problem of cantilever sub-
jected to a parabolic traction on the right edge.

Fig. 7. Convergence of the numerical results in displacement norm for the problem of cantilever
solved using different methods and same set of triangular mesh.

gives upper bound solutions [Liu and Zhang (2008a)]. The ES-PIM has been found
to have very close-to-exact stiffness and is known as, so far, the most accurate linear
model among the numerical methods based on W2 formulation.

Figure 7 plots the convergence of the solutions in displacement norm for the can-
tilever solved using different methods. The present CS-RPIM(T4) model, together
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with FEM and NS-PIM(T3), converge with the reducing average nodal spacing (h)
at about the same rate which is around the theoretical value of 2.0 for both the
weak and weakened weak (W2) formulations [Liu (2008b)]. The CS-PIM(T4-CT)
and CS-RPIM(T2L) perform similarly with higher convergence rate and better accu-
racy than the previous three models. In terms of both convergence and accuracy,
the ES-PIM(T3) stands out clearly. Figure 8 plots the convergence of the solutions
in energy norm for the cantilever problem solved using different methods. It can be
found that CS-RPIM(T4) obtains similar results compared to the FEM and all the
other models obtain much higher convergence rate and better accuracy than the
FEM. We know that the theoretical convergence rate in energy norm of FEM based
on weak form is 1.0 and the ideal rate in energy norm for a W2 formulation is 1.5 [Liu
(2008b)]. For this case, the numerical convergence rate of FEM is found 0.99, which
is very close to the theoretical one for weak formulation. The convergence rates of
all the methods based on W2 formulation, except the CS-RPIM(T4), are between
1.0 and 1.5. In terms of both accuracy and convergence rate, the CS-PIM(T4-CT)
performs the best among all the methods studied here.

To study the efficiency of these methods, we plotted the errors in displace-
ment and energy norms against the computational cost (seconds), as shown in

Fig. 8. Convergence of the numerical results in energy norm for the problem of cantilever solved
using different methods and same set of triangular mesh.
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Fig. 9. Computational cost (seconds) versus error in displacement norm. Comparison of efficiency
between different methods via the problem of cantilever.

Figs. 9 and 10 respectively. It is found that the CS-RPIM(T4) has similar efficiency
compared to the FEM. The CS-RPIM(T2L) and the NS-PIM(T3) have similar effi-
ciency, and they perform better with respect to energy norm error than the previous
two methods. Among all the methods, the CS-PIM(T4-CT) and the ES-PIM(T3)
perform better than the others and respectively they have the best efficiency with
respect to energy and displacement norm errors.

Figure 11 plots the process of strain energies converging to the exact solution for
the cantilever using different methods. The exact value of strain energy for this prob-
lem is 8.593333333, which is calculated by analytical integration using the stresses
given in Eq. (47). As we expected, FEM and NS-PIM give lower and upper bound
respectively and also provide the energy bound to other models. The CS-RPIM(T4)
has been found has a close stiffness as the FEM and converges to the exact one
from below. The CS-PIM(T4-CT) and the CS-RPIM(T2L) have similar stiffness:
they are much softer than the FEM and stiffer than the overly-soft NS-PIM. As we
discussed previously [Liu and Zhang (2008a)], one issue that effects the softness of
the model is the order of shape functions used in the displacement approximation:
when higher order shape functions are used, the displacements approximated in a
smoothing domain are closer to the exact solution, which will reduce the stiffen-
ing effect and vice versa. As the T2L scheme uses more nodes than T4 scheme for
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Fig. 10. Computational cost (seconds) versus error in energy norm. Comparison of efficiency
between different methods via the problem of cantilever.

interpolation of displacements, thus we can find from Fig. 11 that the CS-RPIM
with T2L scheme performs much softer than the CS-RPIM of T4 scheme. For this
case, the ES-PIM(T3) has the most close-to-exact stiffness and its solutions are the
closest to the exact one. The solutions of CS-PIM(T4-CT) and CS-RPIM(T2L) are
in between of those of the NS-PIM(T3) and the ES-PIM (T3).

5.2. Infinite solid with a circular hole

The second benchmark problem is an infinite solid with a central circular hole
(a = 1) and subjected to a unidirectional tensile (Tx = 10), as shown in Fig. 12. Due
to the two-fold symmetry, only one quarter is modeled with b = 5 and symmetry
conditions are imposed on the left and bottom edges. The analytical solution is
available for this problem as follows [Timoshenko and Goodier (1970)]:

ux =
Txa

8μ

[
r

a
(κ + 1) cos θ + 2

a

r
((1 + κ) cos θ + cos(3θ)) − 2

a3

r3
cos(3θ)

]
, (48)

uy =
Txa

8μ

[
r

a
(κ − 3) sin θ + 2

a

r
((1 − κ) sin θ + sin(3θ)) − 2

a3

r3
sin(3θ)

]
, (49)

σxx = Tx

{
1 − a2

r2

[
3
2

cos(2θ) + cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (50)
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Fig. 11. Solutions (in energy norm) converging to the exact solution for the problem of cantilever
obtained using different methods and same set of irregular triangular mesh.

Fig. 12. Infinite solid with a circular hole subjected to uniform tensile and its quadrant model.

σyy = −Tx

{
a2

r2

[
1
2

cos(2θ) − cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (51)

σxy = −Tx

{
a2

r2

[
1
2

sin(2θ) + sin(4θ)
]
− 3a4

2r4
sin(4θ)

}
, (52)

where μ is the shear modulus and κ is the Kolosov which are defined as

μ =
E

2(1 + v)
κ =

⎧⎨
⎩

3 − 4v Plane strain

3 − v

1 + v
Plane stress

. (53)
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In the above equations, (r, θ) are the polar coordinates and θ is measured coun-
terclockwise from the positive x-axis. We studied the problem under plane stress
conditions and traction boundary conditions are imposed on the right and upper
edges with the exact stresses obtained using Eqs. (50)–(52).

Using the same set of triangular meshes, shown in Fig. 13, this problem is studied
using the present method, together with the standard FEM, NS-PIM(T3) and ES-
PIM(T3). The convergence property in terms of displacement of all the methods is
shown in Fig. 14. Again we found that the NS-PIM(T3) and CS-RPIM(T4) obtain
similar results as FEM. All the other models provide much more accurate and faster
convergent solutions than the FEM. In terms of both convergence and accuracy, the
CS-PIM(T4-CT), together with the CS-RPIM(T2L), stand out in the displacement
norm. Figure 15 shows the convergence property in terms of energy error for all
the methods. The CS-RPIM(T4) obtains close results to the standard FEM and
performs the worst among the methods based on W2 formulation. Results of the
NS-PIM(T3) and the ES-PIM(T3) have similar performance which are much better
than the FEM. We found for this example that the CS-PIM(T4-CT) and the CS-
RPIM(T2L) stand out also in the energy norm.

Figure 16 shows the process of strain energies converging to the exact one for
the infinite solid problem solved using different methods, in which the exact strain
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Fig. 13. Domain discretization using three-node triangular cells for the quadrant model of the
problem of infinite solid with a circular hole subjected to uniform tensile.
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Fig. 14. Convergence of the numerical results in displacement norm for the problem of infinite
solid with a hole solved using different methods and same set of irregular triangular mesh.

Fig. 15. Convergence of the numerical results in energy norm for the problem of infinite solid with
a hole solved using different methods and same set of irregular triangular mesh.



April 6, 2009 17:56 WSPC/IJCM-j050 00179

Normed G Space and Weakened Weak (W 2) Formulation of Cell-Based Smoothed PIM 173

Fig. 16. Solutions (in energy norm) converging to the exact solution for the problem of infinite
solid with a hole obtained using different methods and same set of irregular triangular mesh.

energy is calculated using the stresses given in Eqs. (50)–(52) by analytical integra-
tion and the value is 4.325139892E-5. FEM and NS-PIM provide lower and upper
bound solutions respectively and they also bound the solutions of other models
from two sides. The CS-RPIM(T4) model performs a little softly than the FEM
and converges to the exact one from below. The other three models are much softer
than the overly-stiff FEM and stiffer than the overly-soft NS-PIM model. Among all
the methods, the CS-PIM(T4-CT) and the CS-RPIM(T2L) give the closet solution
to the exact one.

5.3. Free vibration of a slender rectangular cantilever

In this example, free vibration analysis is performed for a slender cantilever beam
with L = 100mm, D = 10mm, thickness t = 1.0mm, Young’s modulus E =
2.1×104 kgf/mm4, Poisson’s ratio v = 0.3, mass density ρ = 8.0×10−10 kgf s2/mm4.
A plane stress problem is considered. Because the slenderness of the beam, the
Euler-Bernoulli beam theory is used to obtain the fundamental frequency f1 =
0.08276 × 104 Hz as a reference. Three regular meshes are used in the analysis.
Numerical results using the FEM of four node quadrangular elements (FEM-Q4)
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Table 2. First twelve natural frequencies (in 10 kHz) of the slender cantilever.

CS-PIM CS-RPIM CS-RPIM ES-PIM FEM Reference
Model (T4-CT) (T4) (T2L) (T3) (T3) solu.

Mesh: 10 × 1 0.0576 0.0701 0.0675 0.1048 0.1692 0.0824
Nodes: 22 0.3440 0.4190 0.4003 0.6018 0.9163 0.4944
Background cells: 0.9057 1.0922 1.0210 1.2833 1.2869 1.2824

Three-node triangular cell 1.2803 1.2818 1.2826 1.5177 2.1843 1.3022
1.6471 1.9525 1.7454 2.6362 3.5942 2.3663
2.4993 2.8935 2.4536 3.7724 3.8338 3.6085
3.3973 3.7638 3.1601 3.8559 5.0335 3.8442
3.7957 3.8859 3.7864 5.0349 6.2421 4.9674
4.2743 4.6550 3.9648 6.0827 6.4154 6.3960
4.8330 4.9178 4.8932 6.1520 7.5940 6.4023
4.9122 5.1483 5.6160 7.0519 8.4790 7.8853
5.1088 5.2525 5.8589 7.7212 8.7033 8.9290

Mesh: 20 × 2 0.0769 0.0804 0.0754 0.0853 0.1117 0.0824
Nodes: 63 0.4623 0.4833 0.4578 0.5078 0.6539 0.4944
Background cells: 1.2227 1.2772 1.2266 1.2828 1.2843 1.2824

Three-node triangular cell 1.2823 1.2841 1.2827 1.3246 1.6748 1.3022
2.2325 2.3360 2.2734 2.3783 2.9554 2.3663
3.4165 3.5774 3.5298 3.5784 3.8424 3.6085
3.8350 3.8411 3.8353 3.8298 4.3866 3.8442
4.7133 4.9426 4.9287 4.8533 5.8836 4.9674
6.0720 6.3374 6.3429 6.1527 6.3751 6.3960
6.3512 6.4129 6.4111 6.3182 7.4046 6.4023
7.4630 7.8432 7.9040 7.4419 8.8210 7.8853
8.7693 8.8507 8.7874 8.6776 8.9411 8.9290

Mesh: 40 × 4 0.0809 0.0819 0.0805 0.0827 0.0906 0.0824
Nodes: 205 0.4858 0.4918 0.4825 0.4950 0.5409 0.4944
Background cells: 1.2810 1.2825 1.2699 1.2826 1.2831 1.2824

Three-node triangular cell 1.2825 1.2978 1.2825 1.3006 1.4161 1.3022

2.3308 2.3631 2.3054 2.3554 2.5570 2.3663
3.5572 3.6107 3.5112 3.5778 3.8433 3.6085
3.8421 3.8437 3.8436 3.8408 3.8786 3.8442
4.8981 4.9791 4.8258 4.9029 5.3087 4.9674
6.3102 6.3896 6.2071 6.2867 6.3935 6.3960
6.3862 6.4283 6.3922 6.3774 6.8093 6.4023
7.7646 7.9212 7.6261 7.6987 8.3473 7.8853
8.8996 8.9164 8.9177 8.8751 8.9183 8.9290

with a very fine mesh (100 × 10) for the same problem are computed and used as
reference solutions.

Table 2 lists the first twelve natural frequencies of the cantilever solved using
different methods. The first twelve vibration modes obtained using the CS-PIM(T4-
CT) and CS-RPIM(T2L) are plotted in (a) and (b) of Fig. 17, respectively. No
spurious modes have been found for the present method. The natural frequencies
obtained using the present CS-PIM models are smaller that those of FEM, especially
when less background cells are sued, which also explains that the present method
performs more softly than the FEM.
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(a) Solutions of CS-PIM(T4-CT) (a) Solutions of CS-RPIM(T2L)

Fig. 17. First 12 free vibration modes of the slender cantilever by the CS-PIM models.

Fig. 18. A spherical shell subjected to point loading at the apex.

5.4. Forced vibration analysis of a spherical shell

Finally, a forced vibration analysis is conducted for the spherical shell shown in
Fig. 18. The shell is subjected to a concentrated loading at its apex, and is modeled
as 2D plane strain problem. A half of the shell is modeled using triangular meshes.
The non-dimensional parameters used in the computation are R = 12, t = 0.1,
φ = 10.9◦, θ = 0.5, E = 1.0, ν = 0.3, and ρ = 1.0.

This problem is first studied by subjected to a harmonic loading of f(t) =
cosωf t, and the time history of the deflection at the apex of the shell is plotted
in Fig. 19 with ωf = 0.05 and Δt = 5. It is found that the solution of the CS-
PIM(T4-CT) is very close to that of the ES-PIM(T3), whose results have been
found comparable to those obtained using the eight-nodes quadrilateral elements
of FEM [Liu Nguyen and Lam (2008)]. For this case, the amplitude of the CS-
RPIM(T2L) results is a litter bigger than that of the CS-PIM(T4-CT). Thus the
present two CS-PIM models can obtain much more accurate results than the linear
FEM. Then the shell excited by a constant step load f(t) = 1 starting from t = 0
is studied using the CS-PIM(T4-CT) and the response is plotted in Fig. 20. The
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Fig. 19. Solutions of transient responses of the spherical shell subjected to a harmonic loading
using different methods.
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Fig. 20. Solutions of transient responses of the spherical shell subjected to a constant step loading
using the CS-PIM(T4-CT).
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dash line is for the results without damping, and we found that the amplitude of
the deflection tends to a constant value with increasing time. When a Rayleigh
damping of α = 0.005 and β = 0.272 are considered, the response convergences to
constant very quickly.

6. Conclusions

In this work, a normed G1 space and a weakened weak (W2) formulation for solid
mechanics problems have been first briefly presented. Using the W2 formulation, a
cell-based smoothed point interpolation method (CS-PIM) has been proposed, in
which the displacement fields are approximated using PIM shape functions (poly-
nomial PIM or radial PIM) and the generalized smoothed strains are obtained over
each triangular background cells. A set of edge-based T-schemes for nodes selection
of interpolation have been proposed and an adaptive coordinate transformation
(CT) has been presented to solve the singularity problem encountered in construct-
ing bilinear polynomial PIM shape functions. According to different PIM shape
functions and T-schemes used, three CS-PIM models have been developed. i.e. CS-
PIM(T4-CT), CS-RPIM(T4) and CS-RPIM(T2L). A number of numerical example
problems, including static, free and forced vibration analysis, have been studied to
investigate the properties of those CS-PIM models. Through these investigations,
the following conclusions can be drawn.

• Without introducing additional degrees of freedom, the present method is very
easy to implement and works well using the simplest linear triangular mesh.

• All the three CS-PIM models can pass the standard patch test and thus they are
at least linearly conforming.

• The coordinates transformation (CT) technique can successfully resolve the sin-
gularity problem encountered in the process of constructing bilinear polynomial
PIM shape functions.

• The CS-PIM(T4-CT) stands out from all the methods studied in this work. Com-
pared to other methods, it shows higher convergence rate and efficiency, better
accuracy, and more close-to-exact stiffness for the static analysis. Furthermore,
it is temporally stable and works well for dynamic analysis.

• The CS-RPIM(T4) model performs a little softly than the linear FEM and has
the feature of overly-stiff. Thus the results of it are a litter better than that of
the FEM but much worse than other methods based on W2 formulation. Also,
the CS-RPIM(T4) model is temporally stable.

• The CS-RPIM(T2L) shows similar convergence rate, accuracy and stiffness as the
CS-PIM(T4-CT). Due to more nodes selected for the construction of RPIM shape
functions, it is more expensive than the others and hence has lower efficiency. This
model is also temporally stable. The CS-RPIM(T2L) can perform very well for
thin plates [Cui and Liu et al. (2009)].
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